Proposition 3.4:
Convergent sequences are Cauchy sequences
Proof:
Yet
$$a_n \rightarrow a (n \rightarrow \infty)$$
. For $\varepsilon > 0$ choose
 $n_0 = n_0(\varepsilon)$ s.t.
 $\forall n \ge n_0 : |a_n - a| < \varepsilon$
Then we have
 $\forall l_1 n \ge n_0 : |a_n - a_e| \le |a_n - a| + |a - a_e| < 2\varepsilon$
Proposition 3.5:
Cauchy sequences in R are convergent.
Example 3.4:
Set $a_1 = 1$, $a_n = a_{n-1} + \frac{1}{n}$, $n \ge 2$
Then we obtain the "harmonic sequence":
 $a_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} = \sum_{K=1}^{n} \frac{1}{K}$, $n \in \mathbb{N}$
The sequence $(a_n)_{n \in \mathbb{N}}$ is divergent as
for all $n \in \mathbb{N}$ we have
 $a_{2n} - a_n = \frac{1}{n+1} + \dots + \frac{1}{2n} \ge \frac{n}{2n} = \frac{1}{2}$

iii) N= {1,2,3,--.} is bounded from below, but unbounded from above.
Let now Ø ≠ ACR be bounded from above.
Then we have

B= {b∈R | b is an upper bound for A}
≠ Ø

and V a∈ A, b∈B: a ≤ b

The completeness axiom then gives the existence of a number c∈R s.t.
V a∈ A, b∈B: a ≤ c ≤ b. (*)

Remark 3.2:

Apavently, c is an upper bound for a, so ceB. As ceb for all beB at the same time, c is the "smallest upper bound" for A, and c is uniquely determined by (*). <u>Definition 3.4</u>: For a set A cR which bounded from above, the number c := sup A defined by (*) is

iv) The set A given by

$$A = \left\{ \begin{array}{c} \frac{2x}{1+x^{2}} \mid x \in R \right\}$$
given by the graph of the function

$$x \mapsto \frac{2x}{1+x^{2}} :$$

$$We \text{ have } (1-x)^{2} \ge 0, \forall x \in R$$

$$\implies 1-2x+x^{2} \ge 0 \iff 1+x^{2} \ge 2x$$

$$\implies \sup A \le 1. \text{ On the other hand, from setting } x=1, we obtain \ \sup A \ge 1$$

$$\implies \sup A = 1$$
Zet now (an)new be a sequence in R.

$$\underbrace{\text{Definition } 3.5:}_{\text{(an)} n \in \mathbb{N}} \text{ is bounded from above (below), if } \\ \implies b \in \mathbb{R}, \forall n \in \mathbb{N}: an \le b (b \le a_{n}), \\ \text{that is, if the set } A = \left\{ a_{n} \mid n \in \mathbb{N} \right\} \text{ is bounded from above (below).}$$

Proposition 3.7:
If
$$(a_n)_{n \in \mathbb{N}}$$
 is convergent, then $(a_n)_{n \in \mathbb{N}}$ is
also bounded.
Proof:
Xet $a = \lim_{n \to \infty} a_n$, and for $\varepsilon = 1$ let $n \in \mathbb{N}$ be
such that $|a_n - a| < 1$ for $n \ge n$.
For $n \ge n$, we then have
 $|a_n| = |a_n - a + a| \le |a| + |a_n - a| \le |a| + 1$
There fore,
 $\forall n \in \mathbb{N} : |a_n| \le \max \{|a| + 1, |a_n|, |a_2|, ..., |a_n|\}$
Boundedness is therefore necessary, but
not sufficient for convergence.
Proposition 3.8:
Xet $(a_n)_{n \in \mathbb{N}}$ be bounded from above
and "monotonically increasing", that is
there exists a number beR, s.t.
 $\forall n \in \mathbb{N} : a_1 \le a_2 \le ... \le a_n \le a_{n+1} \le ... \le b$
Then $(a_n)_{n \in \mathbb{N}}$ is convergent, and $\lim_{n \to \infty} = supan$

A nalogously, if (an)new is bounded from
below and "monotonically decreasing", then
it is convergent.
an

$$a$$

 a
 a
 a
 $A = \{a_n \mid n \in \mathbb{N}\}$. According to assumption,
 $A \neq \emptyset$ is bounded from above; therefore
there exists $a = \sup A = \sup_{n \in \mathbb{N}} a_n$ according
to Prop. 3.6
Claim: We have $a = \lim_{n \in \mathbb{N}} a_n$
Proof:
Xet $\varepsilon > 0$ be arbitrary. Then there exists
 $n_{\varepsilon} = n_{\varepsilon}(\varepsilon) \in \mathbb{N}$ s.t. $a_{n_{\varepsilon}} > a = \varepsilon$. Monotomy
then gives
 $\forall n \geq n_{\varepsilon}: a = \varepsilon < a_n \leq a_n \leq \sup_{l \in \mathbb{N}} a_l = a_{\varepsilon} < a_{\varepsilon} \leq u_{\varepsilon} < u_{\varepsilon} = a_{\varepsilon} < u_{\varepsilon} < u_{\varepsilon} = u_{\varepsilon} < u_{\varepsilon} < u_{\varepsilon} = u_{\varepsilon} < u_$

 $\frac{\text{Definition 3.6 (superior/inferior limit):}}{\text{Xet } (a_n)_{n\in\mathbb{N}} \subset \mathbb{R} \text{ be bounded, that is}} \\ \exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} : |a_n| < M \\ \hline \exists M \in \mathbb{R} \quad \forall n \in \mathbb{N} : |a_n| < M \\ \hline \text{For } k \in \mathbb{N} \quad we \text{ then } have \\ c_k = \inf_{n \geq k} a_n \leq \sup_{n \geq k} a_n = b_k \\ Aparently, we have \\ -M \leq c_i \leq - \cdots \leq c_k \leq c_{k+1} \leq b_{k+1} \leq b_k \leq \cdots \leq b_i \leq M_i \\ \quad \forall K \in \mathbb{N} \\ \hline \text{Prop. 3.8} \\ \implies \exists b = \lim_{k \to \infty} b_k =:\lim_{n \to \infty} \sup_{n \to \infty} a_n (\text{"superior limit"}) \\ c_= \lim_{k \to \infty} c_k =:\lim_{n \to \infty} \inf_{n \to \infty} (\text{"inferior limit"}) \\ \end{cases}$