§3.3 Cauchy criterion
Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}.
Definition 3.2:
$\left(a_{n}\right)_{n \in \mathbb{N}}$ is a "Cauchy sequence", if
$\forall \quad \varepsilon>0 \quad \exists n_{0}=n_{0}(\varepsilon) \in \mathbb{N} \quad \forall n_{1} l \geq n_{0}:\left|a_{n}-a_{l}\right|<\varepsilon$
Example 3.3:
Take a classroom of size Σ

students already inside
Then the sequence of students entering this classroom is a cauchy sequence. (distance between students already inside is less than Σ)

Proposition 3.4:
Convergent sequences are Cauchy sequences
Proof:
Let $a_{n} \rightarrow a(n \rightarrow \infty)$. For $\varepsilon>0$ choose $n_{0}=n_{0}(\varepsilon) \quad$ st.

$$
\forall \quad n \geq n_{0}:\left|a_{n}-a\right|<\varepsilon
$$

Then we have

$$
\forall \quad l_{1} n \geq n_{0}:\left|a_{n}-a_{l}\right| \leq\left|a_{n}-a\right|+\left|a-a_{l}\right|<2 \varepsilon
$$

Proposition 3.5:
Cauchy sequences in \mathbb{R} are convergent.
Example 3.4:
Set $a_{1}=1, a_{n}=a_{n-1}+\frac{1}{n}, n \geq 2$
Then we obtain the "harmonic sequence

$$
a_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}, n \in \mathbb{N}
$$

The sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ is divergent as for all $n \in \mathbb{N}$ we have

$$
a_{2 n}-a_{n}=\frac{1}{n+1}+\cdots+\frac{1}{2 n} \geq \frac{n}{2 n}=\frac{1}{2}
$$

$\Rightarrow\left(a_{n}\right)_{n \in \mathbb{N}}$ is not a Cauchy sequence and diverges according to Prop. 3.4.
§3.4 Supremum and Infimum
Definition 3.3
A set $A \subset \mathbb{R}$ is "bounded from above", if there exists a number $b \in \mathbb{R}$ sot.,

$$
\forall a \in A: a \leq b
$$

Every such b is an "upper bound" for A.
A nalogonoly, one defines "bounded frombelow" and "lower bound".
Example 3.5:
i) In our Calculus class the age of every student is bounded from above by 100 years.
ii) The interval

$$
(-1,1)=\{x \in \mathbb{R} \mid-1<x<1\}
$$

is bounded from above $(b y b=1)$ and from below (egg. by $a=-1$).
iii) $\mathbb{N}=\{1,2,3, \ldots\}$ is bounded from below, but unbounded from above.
Let now $\varnothing \neq A \subset \mathbb{R}$ be bounded from above.
Then we have

$$
\begin{aligned}
B & =\{b \in \mathbb{R} \mid b \text { is an upper bound for } A\} \\
& \neq \varnothing
\end{aligned}
$$

and $\forall a \in A, b \in B: a \leq b$
The completeness axiom then gives the existence of a number $c \in \mathbb{R}$ s.t.

$$
\begin{equation*}
\forall a \in A, b \in B: a \leq c \leq b . \tag{*}
\end{equation*}
$$

Remark 3.2:
Apparently, c is an upper bound for a, so $c \in B$. As $c \leqslant b$ far all $b \in B$ at the same time, c is the "smallest upper bound" for A, and c is uniquely determined by (*). Definition 3.4:
For a set $A \subset \mathbb{R}$ which bounded from above, the number $c:=\sup A$ defined by (x) is
called the "supremum" of A.
We summarize:
Proposition 3.6:
i) Every set $\phi \neq A \subset \mathbb{R}$ bounded from above has a smallest upper bound $c=$ sup.
ii) Analogously, every from below bounded set $\phi \neq A \subset \mathbb{R}$ admits a biggest lower bound $d=\inf A$, the so called "infinum" of A.

Example 3.6:
i) The infinum of the age of all humans on earth is O years.
ii) Let $A=(-1,1) \subset \mathbb{R}$. Then we have

$$
\sup A=1, \quad \inf A=-1
$$

iii) $\mathbb{N}=\{1,2, \ldots\}$ is unbounded from above, thus does not admit a supremum. On the other hand, every $k \in \mathbb{N}$ satisfies $K \geq 1$. As $\mid \in \mathbb{N}, 1$ is the biggest lower bound, that is,

$$
\inf \mathbb{N}=1
$$

iv) The $\operatorname{set} A$ given by

$$
A=\left\{\left.\frac{2 x}{1+x^{2}} \right\rvert\, x \in \mathbb{R}\right\}
$$

given by the graph of the function

$$
x \longmapsto \frac{2 x}{1+x^{2}}:
$$

We have $(1-x)^{2} \geq 0, \quad \forall x \in \mathbb{R}$

$$
\Rightarrow \quad 1-2 x+x^{2} \geq 0 \Leftrightarrow 1+x^{2} \geq 2 x
$$

$\Rightarrow \sup A \leq 1$. On the other hand, from setting $x=1$, we obtain $\sup A \geq 1$

$$
\Rightarrow \quad \sup A=1
$$

Let now $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence in \mathbb{R}.
Definition 3.5:
$\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded from above (below), if

$$
\exists b \in \mathbb{R}, \forall n \in \mathbb{N}: a_{n} \leq b \quad\left(b \leq a_{n}\right)
$$

that is, if the set $A=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is bounded from above (below).

Proposition 3.7:
If $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent, then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is also bounded.

Proof:
Let $a=\lim _{n \rightarrow \infty} a_{n}$, and for $\varepsilon=1$ let $n \in \mathbb{N}$ be such that $\left|a_{n}-a\right|<1$ for $n \geq n_{0}$
For $n \geq n_{0}$ we then have

$$
\left|a_{n}\right|=\left|a_{n}-a+a\right| \leq|a|+\left|a_{n}-a\right| \leq|a|+1
$$

Therefore,

$$
\forall n \in \mathbb{N}:\left|a_{n}\right| \leq \max \left\{\left|a_{1}\right|+1,\left|a_{1}\right|,\left|a_{2}\right|, \ldots, \mid a_{n} .1\right\}
$$

Boundedness is therefore necessary, but not sufficient for convergence.
Proposition 3.8:
Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be bounded from above and "monotonically increasing", that is there exists a number $b \in \mathbb{R}$, s.t.

$$
\forall n \in \mathbb{N}: \quad a_{1} \leq a_{2} \leq \cdots \leq a_{n} \leq a_{n+1} \leq \cdots \leq b
$$

Then $\left(a_{n}\right)_{n \in \mathbb{N}}$ is convergent, and $\lim _{n \rightarrow \infty}=$ supan

Analogously, if $\left(a_{n}\right)_{n \in \mathbb{N}}$ is bounded from below and "monotonically decreasing", then it is convergent.

Proof:
Let $A=\left\{a_{n} \mid n \in \mathbb{N}\right\}$. According to assumption, $A \neq \varnothing$ is bounded from above; therefore there exists $a=\sup A=\sup _{n \in \mathbb{N}} a_{n}$ according to Prop. 3.6
Claim: We have $a=\lim _{n \rightarrow \infty} a_{n}$
Proof:
Let $\varepsilon>0$ be arbitrary. Then there exists $n_{0}=n_{0}(\varepsilon) \in \mathbb{N}$ s.t. $a_{n_{0}}>a-\varepsilon$. Monotomy then gives

$$
\forall n \geq n_{0}: a-\varepsilon<a_{n_{0}} \leq a_{n} \leq \sup _{l \in \mathbb{N}} a_{l}=a<a+\varepsilon
$$

so that $\forall n \geq n_{0}:\left|a_{n}-a\right|<\varepsilon$

Definition 3.6 (superiar/inferiar limit):
Let $\left(a_{n}\right)_{n \in \mathbb{N}} \subset \mathbb{R}$ be bounded, that is

$$
\exists M \in \mathbb{R} \quad \forall n \in \mathbb{N}:\left|a_{n}\right|<M
$$

For $k \in \mathbb{N}$ we then have

$$
c_{k}=\inf _{n \geq k} a_{n} \leq \sup _{n \geq k} a_{n}=b_{k}
$$

Apparently, we have

$$
\begin{gathered}
-M \leq c_{1} \leq-\cdot \leq c_{k} \leq c_{k+1} \leq b_{k+1} \leq b_{k} \leq \ldots \leq b_{1} \leq M_{1} \\
\forall k \in \mathbb{N}
\end{gathered}
$$

Prop 3.8

$$
\begin{aligned}
\Rightarrow \exists b & =\lim _{k \rightarrow \infty} b_{k}
\end{aligned}=\lim _{n \rightarrow \infty} \sup a_{n} \text { (superior limit") }
$$

